CSCI 145 Problem Set 2

September 3, 2025

Submission Instructions

Please upload your work by 11:59pm Monday September 8, 2025.

e You are encouraged to discuss ideas and work with your classmates. However, you must
acknowledge your collaborators at the top of each solution on which you collaborated with
others and you must write your solutions independently.

e Your solutions to theory questions must be written legibly, or typeset in LaTeX or markdown.
If you would like to use LaTeX, you can import the source of this document (available from
the course webpage) to Overleaf.

e I recommend that you write your solutions to coding questions in a Jupyter notebook using
Google Colab.

e You should submit your solutions as a single PDF via the assignment on Gradescope.

Grading: The point of the problem set is for you to learn. To this end, I hope to disincentivize the
use of LLMs by not grading your work for correctness. Instead, you will grade your own work by
comparing it to my solutions. This self-grade is due the Friday after the problem set is due, also on
Gradescope.

Problem 1: Single Value Functions

Consider a supervised learning problem with n labels y(,... y(™) € R. In class, we explored the
linear function class that predicted a weighted combination of the input points. In this problem,
we’ll consider the function class that outputs a single real number m € R for all points.

A single number that best fits the data is known as its central tendency in statistics. Here, we
will derive different central tendencies from an empirical risk minimization perspective.

Part A: /5-norm

Consider the f>-norm loss function

Show the optimal value m* is the average.

Part B: /,-norm

Consider the ¢,,-norm loss function

ﬁ(m) - ieg‘?ﬁ(n} |y(l) B ml

Derive the value m* that minimizes this loss.
Hint: Think about the minimization problem directly rather than using derivatives.

Part C: /{-norm

Consider the ¢1-norm loss function

L(m) = [y@ —m|.
i=1

For simplicity, assume that n is odd. Show that the optimal value m* is the median.
Hint: Try drawing the loss on top of a plot of the points on the number line.

Problem 2: Leave One Out Linear Regression

Generally, we have access to a limited amount of data. In machine learning, there’s an inherent
tension in how we use this data. On one hand, we want to use as much data as possible when
training the model, so that the trained model will be more accurate. On the other hand, we're also
interested in evaluating the trained model to see how well it performs. If we evaluate the model
on data that it was trained on, the model may perform well but only because it has seen the data
before.

One solution is to separate the dataset into a training set and an evaluation set. Most commonly,
80% of the data is used to train the model, while the remaining 20% is reserved for evaluating the
model. However, this isn’t ideal because we’re only using a fraction of our data for training, and
only evaluating its performance on a fraction of the data.

In a perfect world, we would use (almost) all the data for both training and evaluation. This
would involve training a model on all but one data point, and evaluating how well its prediction
matches the true label. Most of the time, this leave-one-out approach is quite expensive because we
need to retrain a model from scratch for each of the n points in the dataset.

In this problem, we’ll see how we can more efficiently compute the leave-one-out prediction for
linear models with some clever linear algebra.

Part A: LOO Weights

Let X € R"*? be the data matrix where the ith row is the ith input x(¥) € R?. Let y € R" be the
target vector where the ith entry is the ith label y*) € R.
Recall that the optimal weights when using all n points are:

w'=(XTX)"'XTy.

Show that the leave-one-out weights when the ith labeled data point is removed are:

wi, = (XTX - x(i)x(i)T) B (XTY - X(i)y(i)) . (1)
Hint: Use the outer product definition of matrix multiplication (twice).

Part B: Sherman-Morrison

Computing the inverse of a d x d matrix is expensive, taking roughly O(d?) time. We would like to
compute (X X)~! only once, and then reuse our results for multiple left-out points i € {1,...,n}.
Luckily, the Sherman-Morrison formulal gives us just the tool.

Apply the Sherman-Morrison formula to show that:

L (XTX) T xOx@ T (xTX) .
« _ [(xTx)? (XTv — x(q)) 9
v <()t 1-x0" (XTX) " x® (XTy =))

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula

Part C: LOO Prediction

Define the leverage of the ith point as ¢; = x®7 (XTX)_1 x(", Now show that the leave-one-out
prediction for the ith point is:

, , NOBING!
) = x 0w = P ®

(i N T . ©
where (¥ = x() " w* is the prediction when all n points are used in training.

Part D: Time Complexity

After the initial O(d®) cost of computing (XTX)_I7 what is the time complexity of computing all
n leave-one-out predictions? What would the cost have been if we naively retrained the model for
each prediction?

Part E: In Practice

Load a labeled dataset of your choice (e.g., the first 100 points in the California housing dataset
available on scikitlearn.) Compute the regular predictions, and efficiently compute the leave-
one-out predictions. Plot the leave-one-out predictions and the regular predictions against the true
labels, with an identity line to mark the ideal performance. What do you notice?

