CSCI 145 Problem Set 7

October 8, 2025

Submission Instructions

Please upload your work by 11:59pm Wednesday October 15, 2025.

e You are encouraged to discuss ideas and work with your classmates. However, you must
acknowledge your collaborators at the top of each solution on which you collaborated with
others and you must write your solutions independently.

e Your solutions to theory questions must be written legibly, or typeset in LaTeX or markdown.
If you would like to use LaTeX, you can import the source of this document (available from
the course webpage) to Overleaf.

e I recommend that you write your solutions to coding questions in a Jupyter notebook using
Google Colab.

e You should submit your solutions as a single PDF via the assignment on Gradescope.

Grading: The point of the problem set is for you to learn. To this end, I hope to disincentivize the
use of LLMs by not grading your work for correctness. Instead, you will grade your own work by
comparing it to my solutions. This self-grade is due the Friday after the problem set is due, also on
Gradescope.



Problem 1: Using and Interpreting CNNs

In this problem, we will explore convolutional neural networks (CNNs) and an interpetability tool
called class activation maps (CAM). [This tool from class may be helpful for visualizations.

Part A: Kernels by Hand

Write down one 3 x 3 kernel for blurring, one 3 x 3 kernel for detecting horizontal edges, and one
3 x 3 kernel for detecting diagonal edges. Confirm your kernels work as intended on example 2D
matrices.

Part B: Pretrained CNN

Using torch, load a ResNet50 architecture (example code here). Preprocess an animal photo of your
choice, pass it to the model, and inspect the predictions made by the model. In particular, print
the five largest probabilities (apply softmax to the logits), and the corresponding human-readable
labels.
Part C: Explaining Predictions via CAM
Setup. Let the last convolutional activation tensor be

Ac RBXCXH xW

where B is batch size, C' the number of channels, and H x W the spatial resolution.
Apply global adaptive average pooling (GAP) over the spatial dimensions to obtain

H W
1
= GAP(A) € RP*¢ = —— Ap ey
z (A) € Lo HW;; biestoy
The final fully connected (linear) classifier has weights

W e REXC b eREK,

with K classes and row-vectors w} (k=1,..., K). The class logits are
c
s=zW' +beREXK Sb,k :Zwk,czb,c+bk-
c=1

Class Activation Map (CAM). For class k, the CAM before pooling is defined (per sample b)
as

C
Mb,k(xvy) = E Wk,c Ab,c,z,ya
c=1

so that My € RBEXHXW For the predicted class of sample b,

c
ky = Arg Max Sp,j, My gz (2, y) = E Wi e Ab,c,z,y-
c=1


https://ezyang.github.io/convolution-visualizer/
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/

Procedure (what to implement).

1. Run a forward pass on the input image(s) and extract A (e.g., via a forward hook at the last
conv layer).

2. Compute logits s and, for each sample b, find k; = argmaxy, s .

3. For each sample b, form the CAM using the corresponding classifier weights:

C

HxW

M, = E wk;,cAb,c,w e R .
c=1

4. Upsample M, to the input image resolution (Hy, W) using torch.nn.functional.interpolate
(e.g., mode=’bilinear’, align corners=False):

M, = Interp(My; size = (Ho, Wo)) .
5. Normalize M, to [0,1] (e.g., min—max) and overlay it as a heatmap on the corresponding input
image.

After overlaying the CAM on the input image, what regions appear most responsible for the
model’s prediction? What do you notice?



Problem 2: Transformers

Part A: Self-attention by Hand

You are given a sequence of T' = 3 tokens with d,oqe1 = 2:
10
X=10 1
1 1
Let dj, = d, = 2 and
Wgo=Wg =Wy =1,
1. Compute Q = XWg, K=XWg, V=XWy.
2. Form the unnormalized score matrix S = QKT /+/2.
3. Apply a causal mask (token ¢t may only attend to {1,...,t}; set masked entries to —c0).
4. Apply softmax row-wise to obtain attention weights A.

5. Compute outputs Y = AV.
Report S (masked), A, and Y.

Part B: Self-attention Activations

Consider a pretrained transformer model. Select a text input of your choice. Plot the self-attention
weights at several layers (both early and later) in your transformer model. What patterns do you
notice?

Part C: Cross-attention Activations

Consider a pretrained transformer model for translation. Select a text input of your choice and
translate it. Now feed the original and translated text to a translation model and plot the cross-
attention weights at several layers (both early and later). What patterns do you notice?



