
CSCI 145 Problem Set 9

November 4, 2025

Submission Instructions

Please upload your work by 11:59pm Monday November 3, 2025.

• You are encouraged to discuss ideas and work with your classmates. However, you must
acknowledge your collaborators at the top of each solution on which you collaborated with
others and you must write your solutions independently.

• Your solutions to theory questions must be written legibly, or typeset in LaTeX or markdown.
If you would like to use LaTeX, you can import the source of this document (available from
the course webpage) to Overleaf.

• I recommend that you write your solutions to coding questions in a Jupyter notebook using
Google Colab.

• You should submit your solutions as a single PDF via the assignment on Gradescope.

Grading: The point of the problem set is for you to learn. To this end, I hope to disincentivize the
use of LLMs by not grading your work for correctness. Instead, you will grade your own work by
comparing it to my solutions. This self-grade is due the Friday after the problem set is due, also on
Gradescope.
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Problem 1: Autoencoders and Variational Autoencoders

In this problem, we will explore unsupervised learning through autoencoders (AEs) and variational
autoencoders (VAEs).

Part A: KL Divergence from First Principles

Let P be the univariate normal distribution N (µ, σ2) and Q be the univariate normal distribution
N (0, 1). Starting from the scalar densities
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derive the KL-divergence
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Hint: Take logs, and notice that E[(z − µ)2] = σ2 and E[z2] = σ2 + µ2.
What is the KL divergence when we have a multivariate distribution where each dimension is

independent? That is,
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Part B: Autoencoder

Implement and train an autoencoder with a bottleneck k = 2 on MNIST.
Take a random sample of 100 points and embed them into the latent space with your trained

encoder. Label the points based on their class, what do you notice about where the points cluster?

Part C: Variational Autoencoder

Implement a VAE, also with bottleneck k = 2. In particular, you should produce µx ∈ R2 and

Σ2 =

[
σ2
1 0
0 σ2

2

]
. Train the VAE with the reconstruction and multivariate KL loss you derived in

part A.
Like for the autoencoder, embed 100 points into the latent space. How do those encoded with

the VAE compare to those encoded with the autoencoder?
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Problem 2: Principal Component Analysis

Part A: Frobenius Norm

Let X = UΣV⊤ be the rank r singular value decomposition of X. Suppose that X ∈ Rn×d,
U ∈ Rn×r, Σ ∈ Rr×r, and V ∈ Rd×r. In this problem, you will show that

∥X∥2F =

r∑
i=1

σ2
i .

Because the singular vectors are orthogonal, recall that U⊤U = Ir×r = V⊤V. Use this property
to show that

∥UΣV⊤∥2F = ∥ΣV⊤∥2F = ∥Σ∥2F.

Finally, rewrite the previous equation as the sum of squared singular values.

Part B: PCA Reconstruction

Load an image X of your choice. Compute its singular value decomposition X = UΣV⊤, and plot
the PCA reconstruction Xk for k = 1, 10, 50, 100.

Using the singular values computed in Σ, plot the singular value spectrum (singular value by
index) and the reconstruction error you computed in class by k.

Part C: Word Math

Load a text encoder of your choice. Choose n words e.g., young, old, puppy, and dog, etc. Use
the text encoder to represent each word in d dimensions. Build the matrix X ∈ Rn×d, and find its
singular value decomposition. Compute the latent representations of the words with k = 2. Plot
and label the latent representations of the words. Can you get word math to work?
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