
CSCI 1051 Homework 2

January 20, 2023

Submission Instructions

Please upload your solutions by 5pm Friday January 20, 2023. Remember you have 24 hours
no-questions-asked combined lateness across all assignments.

• You are encouraged to discuss ideas and work with your classmates. However, you must
acknowledge your collaborators at the top of each solution on which you collaborated with
others and you must write your solutions independently.

• Your solutions to theory questions must be typeset in LaTeX or markdown. I strongly recom-
mend uploading the source LaTeX (found here) to Overleaf for editing.

• Your solutions to coding questions must be written in a Jupyter notebook. I strongly suggest
working with colab as we do in the demos.

• You should submit your solutions as a single PDF via the assignment on Canvas.

Problem 1 (from January 17)

Part 1

Consider the small recurrent neural network drawn in Figure 1. Suppose we apply the network to
a sequence of even length T . What values could the final output yT take? And when does it take
each value?

Figure 1: A small recurrent neural network.

Hint: It may help to enroll the network through time on a test input of your choice.

1

https://www.rtealwitter.com/deeplearning2023/files/homework2.tex


Part 2

Consider the demo on recurrent neural networks. We used a fancy model called an LSTM that we
didn’t actually implement. In this problem, your job is to replace the LSTM architecture with the
simple recurrent neural network from class. In particular, put in the following architecture

ht = sigmoid(Uxt +Wht−1)

ŷt = softmax(Vht).

You may not use the Pytorch recurrent neural network function. Instead, you should be using
the following functions: nn.Linear, F.sigmoid, and F.softmax. In addition, torch.zeros and
torch.stack may be helpful.

Hint: The only code block you should change in the demo is the RNN class.
Once you have implemented your own recurrent neural network and run the rest of the code,

comment on why you think the performance of your RNN differs from the performance of the LSTM.

Problem 2

Let us assume the basic definition of self-attention (without any weight matrices) where all the
queries, keys, and values are the data points themselves. That is, xi = qi = ki = vi.

Consider four orthogonal vectors a,b, c,d. Suppose the ℓ2-norm of each vector is β, a very large
number.

We will define the following tokens

x1 = b+ d x2 = a x3 = c+ b.

1. What are the norms of x1,x2,x3?

2. Compute (y1,y2,y3) = self-attention(x1,x2,x3). Identify which tokens (or combinations of
tokens) are approximated by the outputs y1,y2,y3.

3. Using the above example, describe in a couple of sentences how self-attention allows networks
to “copy” an input value to the output.

Problem 3

In this problem, you will code the the GloVe model from scratch. Consider a vocabulary with
n words. By processing a bunch of text (perhaps all Harry Potter books?), you can build a co-
occurrence matrix X ∈ Rn×n where Xij is the number of times the ith word in your vocabulary
appears next to the jth word.

The goal of GloVe is to approximate this co-occurrence matrix as as the product of two low-rank
matrices. These low-rank matrices, and some additional vectors, are the trainable parameters of the
model: U,V,b, c. It will be helpful to figure out the dimension of each of these.

Then the loss function is

L(U,V,b, c) =
1

2

n∑
i=1

n∑
j=1

f(Xij)
(
u⊤
i vj + bi + cj − log(Xij)

)2
where f : R → [0, 1] is a fixed function which maps large numbers to 1 and small numbers to 0,
ui is the ith column of U, and vj is the jth column of V. Note in the original paper, they use
f(z) = (z/100)3/4 if z < 100 and 1 otherwise.

2

https://nlp.stanford.edu/pubs/glove.pdf


Hint: There will be many 0 entries in X, so you should be clever so you only iterate over the
nonzero entries.

You can choose to use the Pytorch functionality for the linear layers and the loss. However, I
found it easier to instantiate matrices/vectors and directly update their weights.

Once you have a trained GloVe model, you should repeat the embedding exploration we did in
the demo for Word2Vec. In particular,

• find the top ten “similar” words to a word of your choice

• and plot the embeddings of some words of your choice.

You are welcome to re-use code from the demo for any part of this assignment.

3


