
CSCI 1052 Problem Set 1

January 11, 2024

Submission Instructions

Please upload your solutions by 5pm Friday January 12, 2023.

• You are encouraged to discuss ideas and work with your classmates. However, you must
acknowledge your collaborators at the top of each solution on which you collaborated with
others and you must write your solutions independently.

• Your solutions to theory questions must be typeset in LaTeX or markdown. I strongly recom-
mend uploading the source LaTeX (found here) to Overleaf for editing.

• I recommend that you write your solutions to coding question in a Jupyter notebook using
Google Colab.

• You should submit your solutions as a single PDF via the assignment on Canvas.

1

https://www.rtealwitter.com/rads2024/files/ps1.tex


Problem 1: Wikipedia Articles

In class, we calculated the number of duplicates in a sample of size m as

D =

m∑
i=1

m∑
j=i+1

Di,j

where Di,j is an indicator random variable that the ith and jth sampled items are the same. In
expectation when the samples are drawn uniformly at random, we saw that

E[D] =
m(m− 1)

2n
.

Part 1

In practice, we know m the number of samples we’ve taken and D the number of duplicates in
the sample. Using these quantities, suggest a method for estimating n the set size inspired by our
expression for E[D].

Part 2

Implement your method from Part 1 to estimate the number of unique articles in the English
Wikipedia. You can access “random” articles (see the discussion here) by visiting the link: https:
//en.wikipedia.org/wiki/Special:Random.

According to the article here, English Wikipedia has 6.7 million articles. How does that compare
to your estimate? How does the fact that the random article feature doesn’t perfectly return random
articles bias your estimate?

In Python, you can get a random URL by running the following code:

import requests

response = requests.get("https://en.wikipedia.org/wiki/Special:Random")

random_url = response.url

In my experiments, it took 36 minutes to get 5000 random articles. At this rate, it would take
33.5 days to get 6.7 million articles.

In your solution, include all relevant results and calculations in addition to a discussion of how
accurate you think your estimate is.

2

https://en.wikipedia.org/wiki/Wikipedia:FAQ/Technical#random
https://en.wikipedia.org/wiki/Special:Random
https://en.wikipedia.org/wiki/Special:Random
https://en.wikipedia.org/wiki/English_Wikipedia


Problem 2: Count-Min Works Super Well

We showed that Count-Min can estimate the frequency of any item in a stream of n items up to
additive error 1

mn using O(m) space. In practice it is often observed that this bound is pessimistic:
the algorithm performs better than expected. In this problem, you will establish one reason why.

For any positive integer m, let f1, . . . , fm be the frequencies of the m most frequent items in
our stream. Let C = n −

∑m
i=1 fi. In general, we can have that C ≪ n. For example, it has been

observed that up to 95% of YouTube video views come from just 1% of videos. Prove that using
O(m) space, Count-Min actually returns an estimate f̃(v) to f(v) for any item v satisfying:

f(v) ≤ f̃(v) ≤ f(v) +
2

m
C (1)

with 9/10 probability. This is strictly better than the 1
mn error bound shown in class.

Part 1

Explain why it suffices to show Equation 1 holds with any constant probability c > 0.
Then write the estimate f̃(v) = A[h(v)] as the true frequency f(v) and two error terms; the first

error term is for the m most frequent items that could collide with v and the second error term is
for the remaining items that could collide with v.

Part 2

Prove that the first error term is 0 with constant probability; that is, there is a constant probability
that none of the m most frequent items collide with v.

Hint: Use one of these inequalities:

1

e
≥

(
1− 1

m

)m

≥ 1

2e
.

You can check these inequalities for yourself on Desmos.
Following the analysis in class, prove that the second error term is at most 2

mC with constant
probability.

Show how both results together imply that Equation 1 holds with a constant probability.

3

https://www.desmos.com/calculator/bok5upfowo


Problem 3: Clever Group COVID-19 Testing

One of the most important factors in controlling diseases like COVID-19 is testing. Before at-home
kits became available, testing was expensive and slow. One way to make it cheaper was to test
patients in groups. The biological samples from multiple patients (e.g., multiple nose swabs) are
combined into a single test tube and tested for COVID-19 all at once. If the test comes back
negative, we know everyone in the group is negative. If the test comes back positive, we do not
know which patients in the group actually had COVID-19, so further testing would be necessary.
There’s a trade-off here, but it turns out that, overall, group testing can save on the total number
of tests run.

Part 1

Consider the following deterministic “two-level” testing scheme. We divide a population of n indi-
viduals to be tested into C groups of the same size. We then test each of these groups. For any
group that comes back positive, we retest all members of the group individually. Show that there is
a choice for C such that, if k individuals in the population have COVID-19, we can find all of those
individuals with ≤ 2

√
nk tests. You can assume k is known in advance (often it can be estimated

accurately from the positive rate of prior tests). This is already an improvement on the naive n tests
when k < 25% · n.

Part 2

We can use randomness to do better. Consider the following scheme: Collect q = log2(10n) nose
swabs from each individual (I know... not pleasant). Then, repeat the following process q times:
randomly partition our set of n individuals into C = 2k groups, and test each group in aggregate.
Once this process is complete, report that an individual “has COVID” if the group they were part of
tested positive all q times. Report that an individual “is clear” if any of the groups they were part
of tested negative. Show that, with probability 9/10, this scheme finds all truly positive patients
and reports no false positives. Thus, we only require 2k ∗ log2(10n) = O(k log n) tests!

4



Problem 4: Hashing Around the Clock

In modern systems, hashing is often used to distribute data items or computational tasks to a
collection of servers. What happens when a server is added or removed from a system? Most hash
functions, including those discussed in class, are tailored to the number of servers, n, and would
change completely if n changes. This would require rehashing and moving all of our m data items,
an expensive operation.

Figure 1: Each data item is stored on the server with matching color.

Here we consider an approach to avoid this problem. Assume we have access to a completely
random hash function that maps any value x to a real value h(x) ∈ [0, 1]. Use the hash function to
map both data items and servers randomly to [0, 1]. Each data item is stored on the first server to
its right on the number line (with wrap around – i.e. a job hashed below 1 but above all servers is
assigned to the first server after 0). When a new server is added to the system, we hash it to [0, 1]
and move data items accordingly.

Part 1

Suppose we have n servers initially. When a new server is added to the system, what is the expected
number of data items that need to be relocated?

Part 2

Show that, with probability > 9/10, no server “owns” more than an

loge(20n)

n

fraction of the interval [0, 1]. This can be proven without a concentration bound.
Hint 1: (

1− 1

x

)x−1

≤ 2

(
1− 1

x

)x

Hint 2: (
1− y

x

)x

=
((

1− y

x

)x)y/y

=
(
(1− y/x)

x/y
)y

5



Hint 3: (
1− 1

z

)z

≤ 1

e

6



Problem 5: Flipping Coins with Concentration

Consider n flips of a fair coin. Let H be the number of heads from the n flips.

Part 1

Using the exact formula (binomial distribution), empirically (using code) compute

Pr(H ≥ C) (2)

for some constant C.
In particular, exactly compute Equation 2 for n = 100 and C = 60, n = 1000 and C = 600,

n = 100 and C = 70, n = 1000 and C = 700.

Part 2

Now consider Chernoff’s (in the form below)

Pr[H ≥ (1 + ϵ)µ] ≤ exp

(
− ϵ2µ

2 + ϵ

)
.

Use Chernoff’s to upper bound the probability in Equation 2 for n = 100 and C = 60, n = 1000
and C = 600, n = 100 and C = 70, n = 1000 and C = 700.

Write a several sentence comment on what your findings suggest about how “tight” the Chernoff
bound in this setting.

7


