
CSCI 1052 Problem Set 3

January 25, 2024

Submission Instructions

Please upload your solutions by 5pm Friday January 26, 2024.

• You are encouraged to discuss ideas and work with your classmates. However, you must
acknowledge your collaborators at the top of each solution on which you collaborated with
others and you must write your solutions and code independently.

• Your solutions to theory questions must be typeset in LaTeX or markdown. I strongly recom-
mend uploading the source LaTeX (found here) to Overleaf for editing.

• I recommend that you write your solutions to coding question in a Jupyter notebook using
Google Colab.

• You should submit your solutions as a single PDF via the assignment on Gradescope. You
can enroll in the class using the code GPXX7N.

• Once you uploaded your solution, mark where you answered each part of each question.

1

https://www.rtealwitter.com/rads2024/psets/pset3.tex

Problem 1: Distance Reconstruction

Suppose you are given all pairwise distances between a set of points x1, . . . ,xn ∈ Rd. You can
assume that d ≪ n. Let D ∈ Rn×n be the distance matrix with Di,j = ∥xi − xj∥22. You would like
to recover the location of the original points, at least up to possible rotations and translations which
do not change pairwise distances. Assume that

∑n
i=1 xi = 0.

We can learn the sum of norms
∑n

i=1 ∥xi∥22 from D. In particular,

n∑
i=1

n∑
j=1

Di,j =
∑
i

∑
j

∥xi∥22 + ∥xj∥22 − 2x⊤
i xj =

∑
i

∑
j

(∥xi∥22 + ∥xj∥22)− 2x⊤
i

∑
j

xj

 .

By our assumption that the points are centered around the origin i.e.,
∑

j xj = 0, we can conclude
that ∑

i

∑
j

Di,j =
∑
i

∑
j

∥xi∥22 + ∥xj∥22 = 2n
∑
i

∥xi∥22.

Part 1 (2 points)

Inspired by the above approach, describe an efficient algorithm for learning ∥xi∥22 for each i.
Next, describe an algorithm for recovering a set of points x1, . . . ,xn which realize the distances

in D. Hint: This is where you will use the SVD! It might help to prove that D has rank ≤ d+ 2.

Part 2 (1 point)

Implement your algorithm and run it on the U.S. cities dataset (details below). Note that the
distances in the file are unsquared Euclidean distances, so you need to square them to obtain D.
Plot your estimated city locations on a 2D plot and label the cities to make it clear how the plot is
oriented. Submit these images and your code with the problem set.

I recommend starting with Python code in UScities.py. Alternatively, you can directly access
the TXT or CSV files.

2

https://www.rtealwitter.com/rads2024/psets/UScities.py
https://www.rtealwitter.com/rads2024/psets/UScities.txt
https://www.rtealwitter.com/rads2024/psets/UScities.csv

Problem 2: Opinion Dynamics

We will analyze one model of how opinions evolve in a social network through the lens of the power
method. Consider a social network represented by a graph G = (V,E) where V is a set of n nodes
and E is a set of edges. Let z(0) ∈ Rn be a vector of randomly initialized starting opinions. If zi ≥ 0,
we say the ith node has an opinion right of the center and, if zi ≤ 0, we say the ith node has an
opinion left of the center.

We will use the DeGroot model where the opinions are averaged among neighbors at every step.
Formally,

z
(t)
i =

1

di

∑
j:(i,j)∈E

z
(t−1)
j (1)

where the degree di is the number of nodes adjacent to i.
If we run this process for long enough, the opinions will converge to an average opinion. However,

if we mean-center and normalize the opinions after each step, we will get interesting behavior.
Formally, after the update process in Equation 1, we will mean-center

z(t) = z(t) −mean(z(t))

and normalize

z(t) = z(t)/∥z(t)∥2.

Part 1 (2 points)

Consider the adjacency matrix A and degree matrix D. We define the adjacency matrix to encode
which nodes are connected

Ai,j =

{
1 if (i, j) ∈ E or (j, i) ∈ E

0 else

and the degree matrix to encode the degree of each node

Di,j =

{
di if i = j

0 else
.

Write the opinion vector z(t) after t iterations of DeGroot dynamic updates in terms of matrix
multiplication using A and D and the starting opinion vector z(0).

Apply the power method analysis from class to write z(t) in terms of the eigenvector of some
matrix. Remember to make this matrix symmetric so we can apply the power method.

Hint: You will need to use the second eigenvector because the (modified) top eigenvector of
this matrix is the constant vector. This is one reason the unmodified DeGroot opinion dynamics
converge to a constant opinion.

Part 2 (1 point)

Use the python library networkx to implement and visualize z(t) using the direct computation and
the power method computation. I recommend starting with Python code in opinions.py.

How do the final opinions z(t) depend on the starting opinions z(0)? What does your conclusion
imply about how people might form opinions?

3

https://www.rtealwitter.com/rads2024/psets/opinions.py

Problem 3: Spectral Clique Finding

A common tasks in data mining is to identify large cliques in a graph. For example, in social
networks, large cliques can be indicators of fraudulent accounts or networks of accounts designed to
promote certain content. In this problem, we consider a spectral heuristic for finding a large clique
based on the top eigenvector of the graph adjacency matrix A:

• Compute the leading eigenvector v1 of A.

• Let i1, . . . , ik ∈ {1, . . . , n} be the indices of the k entries in v1 with largest absolute value.

• Check if nodes i1, . . . , ik form a k-clique.

We will analyze this heuristic on a natural random graph model. Specifically, let G be an Erdos-
Renyi random graph: we start with n nodes, and for every pair of nodes (i, j), we add an edge
between the pair with probability p < 1. To simplify the math, also assume that we add a self-loop
at every vertex i with probability p. Then, choose a fixed subset S of k nodes to form a clique.
Connect all nodes in S with edges and add self-loops. We will argue that, for sufficiently large k,
we can expect the heuristic above to identify the nodes in the clique.

Part 1 (2 points)

Let A be the adjacency matrix of a random graph generated as above. What is E[A]? Then write
E[A] in terms of its eigenvalues and eigenvectors (you don’t need to find the exact expression for
these!). Hint: Argue that, up to multiplying by a constant, any eigenvector v must have v[i] = 1
for all i /∈ S and v[i] = α for all i ∈ S, where α is a constant.

Part 2 (1 point)

To prove the algorithm works, it is possible to use a matrix concentration inequality to argue that the
top eigenvector of A is close to that of E[A]. Instead of doing that, let’s verify things experimentally.
Generate a graph G according to the prescribed model with n = 900, k = |S| = 30, and p = .1.
Compute the top eigenvector of A and look at its 30 largest entries in magnitude. What fraction
of nodes in the clique S are among these 30 entries? Repeat the experiment and report the average
fraction recovered.

4

Problem 4: Regression

Let n ≥ d. Consider a feature matrix A ∈ Rn×d and a target vector b ∈ Rn. The regression problem
is to find a minimizing vector

x∗ = arg min
x∈Rd

∥Ax− b∥22.

In class, we showed how to quickly solve the regression problem by projecting our feature matrix
and target vector into a lower dimensional space. In this problem, you will derive the exact solution
for x∗ and then explain how long it takes to compute it.

Part 1 (2 points)

Show that x∗ =
(
A⊤A

)−1
A⊤b.

Hint: Compute the partial derivative with respect to xk of the ℓ2-norm and set it equal to 0.

Part 2 (1 point)

Explain why computing
(
A⊤A

)−1
A⊤b takes O(nd2) time.

5

