CSCI 1051 Homework 4

January 29, 2024

Submission Instructions

Please upload your solutions by 5pm Friday February, 2024.

- You are encouraged to discuss ideas and work with your classmates. However, you must acknowledge your collaborators at the top of each solution on which you collaborated with others and you must write your solutions and code independently.
- Your solutions to theory questions must be typeset in LaTeX or markdown. I strongly recommend uploading the source LaTeX (found here) to Overleaf for editing.
- I recommend that you write your solutions to coding questions in a Jupyter notebook using Google Colab.
- You should submit your solutions as a single PDF via the assignment on Gradescope. You can enroll in the class using the code GPXX7N.
- Once you uploaded your solution, mark where you answered each part of each question.

Problem 1

Consider the linear regression problem with $n \geq d$. Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a feature matrix and $\mathbf{b} \in \mathbb{R}^{n}$ be a target vector. The regression problem is to find a minimizing vector

$$
\mathbf{x}^{*}=\arg \min _{\mathbf{x} \in \mathbb{R}^{d}}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}
$$

You previously showed that the optimal solution is $\mathbf{x}^{*}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b}$. In this problem, you will compare computing the optimal solution exactly to computing it approximately using the fast Johnson-Lindenstrauss transform. We will use the MNIST dataset to build A and b. The MNIST dataset consists of 28×28 pixel handrawn digits of numbers with the corresponding label.

Part 1 (1 point)

Using the code I provide in regression.py, compute the exact solution \mathbf{x}^{*} and the mean squared error

$$
\frac{1}{n}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}
$$

If your code is anything like mine, it will be slow and return a a terrible solution due to round off error.

Part 2 (2 points)

Now implement the fast JL transform as described in class. In particular, compute $\boldsymbol{\Pi} \mathbf{A}=\mathbf{S H D A}$ one column of \mathbf{A} at a time. Recall that \mathbf{S} is a sampling matrix, \mathbf{H} is a Hadamard, and \mathbf{D} is a diagonal matrix with a random sign.

When you are done, compute the mean squared error of your solution and comment on how it compares to the "exact" solution.

Hint: Computing \mathbf{H} is too expensive so write a function to compute $\mathbf{H D x}$ using recursion. You can speed up the recursion by checking if there are any non-zeros in the vector.

Problem 2

Thank you for taking this class with me! As I've mentioned, I love randomized algorithms for data science because the topic combines beautiful math with interesting applications. I know I have a lot to improve and I would love your feedback on what went well and what could have gone better! Here are some of the aspects of the course I've thought a lot about but you can give me feedback on anything.

- Content: What topics did you like? What would you like to have covered? What would you be okay skipping?
- Difficulty: How was the difficulty of the class?
- Daily Check in Forms: What do you think about the daily check in forms?
- Group Activities: What did you think about the group activities?
- Content Review: What did you think about the content review the next day?
- Accessibility: How accessible was I as a teacher? Did you feel comfortable asking me questions? Did I give enough or too many hints when asked about problems?
- Afternoon Problem Solving: What did you think about the afternoon problem solving session?
- Self-Grade and LaTeX: What did you think about the self-grade and writing your solutions in LaTeX?
- Typed Notes and Slides: What did you think about having the typed notes available online? How about the slides?

Part 1 (1.5 points)

Please tell me what you liked about the class so I can do more of it in the future.

Part 2 (1.5 points)

Please tell me what I could improve to make the experience better.

