

Tuesday, February 3

- Reading available for every lecture
- Typos/mistakes now have to be submitted after class
- Research talk Friday 11-12:15 in Davidson Lecture Hall

Plan

- Use variance for stronger concentration inequalities
- Estimate number of distinct elements

Markov's Inequality

Let X be non-negative rv, $\epsilon > 0$

$$\Pr(X > \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$$

Comparison:

- Chebyshov's applies to any rv with bounded variance
- Chebyshov's is two-sided

But bounding variance is harder than bounding expectation

Chebyshov's Inequality

Let X be rv with variance $\sigma^2 = \text{Var}(X)$, $k > 0$

$$\Pr(|X - \mathbb{E}[X]| \geq k\sigma) \leq \frac{1}{k^2}$$

Proof: $S = (X - \mathbb{E}[X])^2$

By Markov's,

$$\Pr(S \geq t) \leq \frac{\mathbb{E}[S]}{t}$$

Note: $\mathbb{E}[S] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \text{Var}(X) = \sigma^2$

Set $t = k^2\sigma^2$,

$$\Pr((X - \mathbb{E}[X])^2 \geq k^2\sigma^2) \leq \frac{\sigma^2}{k^2\sigma^2}$$

\Leftrightarrow

$$\Pr(|X - \mathbb{E}[X]| \geq k\sigma) \leq \frac{1}{k^2}$$

Independence

tool for analyzing variance

Consider X_1, \dots, X_m

Pairwise indep if, for $i \neq j$,

$$\Pr(X_i = v_i, X_j = v_j) = \Pr(X_i = v_i) \Pr(X_j = v_j)$$

k -wise indep if, for all $1, \dots, k$,

$$\Pr(X_1 = v_1, \dots, X_k = v_k) = \Pr(X_1 = v_1) \dots \Pr(X_k = v_k)$$

Linearity of Variance

For pairwise indep X_1, \dots, X_m

$$\text{Var}\left(\sum_{i=1}^m X_i\right) = \sum_{i=1}^m \text{Var}(X_i)$$

Q: Can you think of three variables that are 2-wise indep but not 3-wise?

Coin Example

C_1, \dots, C_{100}

$$C_i = \begin{cases} 1 & \text{wp } 1/2 \\ 0 & \text{else} \end{cases}$$

$$C = \sum_{i=1}^{100} C_i$$

What's the probability that $C \geq 70$?

- Using Markov's
- Chebyshev's
- Exact distribution

Distinct Elements

Data arrives in a stream,
how many unique elements?

$x_1, \dots, x_n \in U$

$D = \# \text{ distinct elements}$

For example,

Input: 1, 10, 2, 4, 9, 2, 10, 4

Output: $D = 5$

Applications:

- webpage visitors
- queries to search engine
- motifs in DNA

} HyperLogLog
used at all
the big tech
companies

Name Attempt: hash map, $O(d)$ space

Our Goal: Return \hat{D} s.t.

$$(1 - \epsilon) D \leq \hat{D} \leq (1 + \epsilon) D$$

with $O(\frac{1}{\epsilon^2})$ space, basically*
independent of D

Algorithm

$$h: U \rightarrow [0,1]$$

$$S \leftarrow 1$$

For x_1, \dots, x_n ,

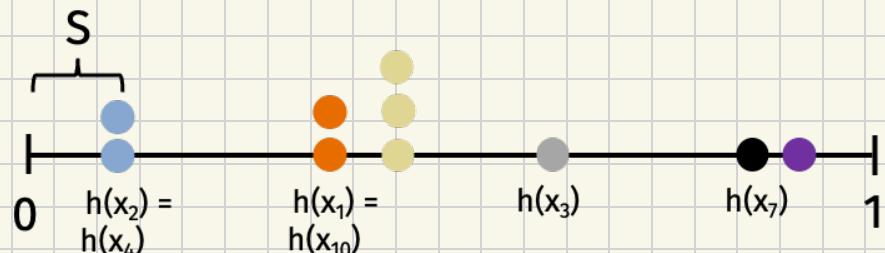
$$S \leftarrow \min(S, h(x_i))$$

$$\hat{D} \leftarrow \frac{1}{S} - 1$$

Intuition: S gets smaller as
 D gets larger

$$\text{why } \hat{D} = \frac{1}{S} - 1 ?$$

$$\text{Implies: } S = \frac{1}{\hat{D} + 1}$$



Note: We pretend h maps to real numbers.
In practice, use discrete values but
continuous case is easier to analyze.

Lemma: $E[S] = \frac{1}{D+1}$

Calculus Proof:

$$X = \int_{x=0}^X dx = \int_{x=0}^{\infty} \mathbb{1}[X \geq x] dx \quad \xrightarrow{\substack{\text{linearity of} \\ \text{expectation}}} \quad E[X] = \int_{x=0}^{\infty} \Pr(X \geq x) dx$$

$$E[S] = \int_{s=0}^1 \Pr(S \geq s) ds = \int_{s=0}^1 (1-s)^D ds = \left. -\frac{(1-s)^{D+1}}{D+1} \right|_{s=0}^1 = \frac{1}{D+1}$$

Thursday, February 5

- Shapley values for causal inference
 - ↳ tomorrow 11am @ Davidson Lecture Hall
- GEMS Mentors!
 - ↳ Saturday 9:30am @ Shanahan
(Please email me)

Plan

Apply Chebyshov's to distinct elements

Algorithm

$$h: U \rightarrow [0,1]$$

$$S \leftarrow 1$$

For x_1, \dots, x_n ,

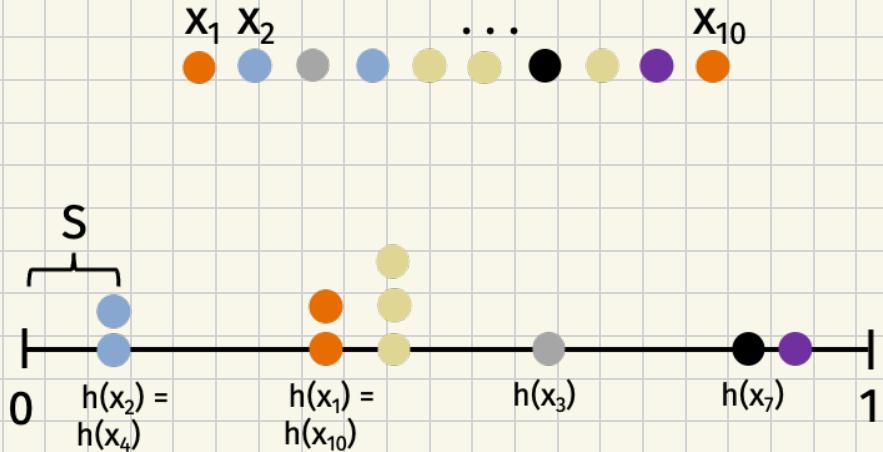
$$S \leftarrow \min(S, h(x_i))$$

$$\hat{D} \leftarrow \frac{1}{S} - 1$$

Plan: Bound S

☒ $ES = \frac{1}{D+1}$

☐ $E[S^2] = \frac{2}{(D+1)(D+2)}$



Chebyshev's

RV X with $\sigma^2 = \text{Var}(X)$, $\epsilon > 0$

$$\Pr(|X - \mathbb{E}X| \geq \sigma\epsilon) \leq \frac{1}{\epsilon^2}$$

Lemma: $\mathbb{E}[S] = \frac{1}{D+1}$

Proof "from the book":

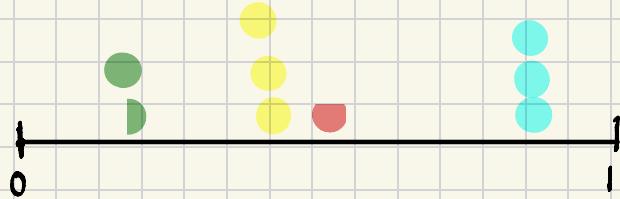
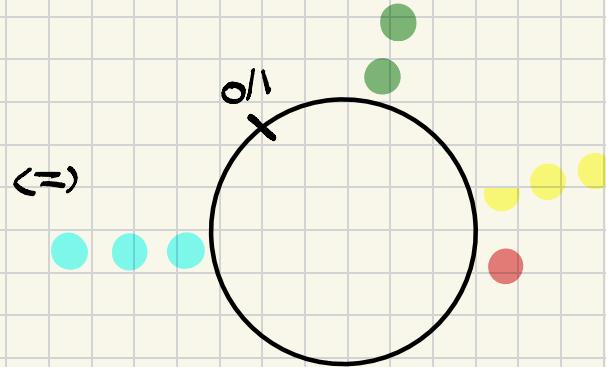
$$\mathbb{E}_x [Pr(A|x)] = \mathbb{E}_x [\mathbb{E}[\mathbb{I}(A)|x]] = \mathbb{E}_x [\mathbb{I}(A)] = Pr(A)$$

$$S = Pr(h_{D+1} \leq \min_{i \in [D]} h_i | h_1, \dots, h_D)$$

$$\begin{aligned} \mathbb{E}_{h_1, \dots, h_D} [S] &= \mathbb{E}_{h_1, \dots, h_D} [Pr(h_{D+1} \leq \min_{i \in [D]} h_i | h_1, \dots, h_D)] \\ &= \Pr_{h_1, \dots, h_{D+1}} (h_{D+1} \leq \min_{i \in [D]} h_i) \\ &= \frac{1}{D+1} \end{aligned}$$

$$\text{Lemma: } \mathbb{E}[S] = \frac{1}{D+1}$$

Larry's Proof:



$D+1$ items distributed uniformly* on circle,
By symmetry, $\frac{1}{D+1}$ distance
between them in expectation

* $O/1$ fixed but hashing
is rotationally invariant
so appears uniformly random

Know $E[S]$, we also need $\text{Var}(S)$ for Chebyshev's

Lemma: $E[S^2] = \frac{2}{(D+1)(D+2)}$

Calculus Proof:

Hint

$$\int_{s=0}^1 (1-\sqrt{s})^0 ds = \frac{2}{(D+1)(D+2)}$$

Proof from the Book:

$$\mathbb{E}[S] = \frac{1}{D+1} \stackrel{D}{=} \mu \quad \mathbb{E}[S^2] = \frac{2}{(D+1)(D+2)}$$

$$\text{Var}(S) = \mathbb{E}[S^2] - \mathbb{E}[S]^2 \\ = \frac{2}{(D+1)(D+2)} - \frac{1}{(D+1)^2} \leq \frac{1}{(D+1)^2} = \mu^2$$

By Chebyshev's

$$\Pr(|S - \mu| \geq \epsilon \mu) \leq \frac{1}{\epsilon^2} \quad \text{vacuous!}$$

Motif: Lower failure probability by repeating subroutine!

Repeat K times!

$h_1, \dots, h_K: U \rightarrow [0,1]$

$s_1, \dots, s_K \leftarrow 1$

For $i=1, \dots, n$:

For $j=1, \dots, K$:

$s_j \leftarrow \min(s_j, h_j(x_i))$

$\bar{s} \leftarrow \frac{1}{K} \sum_{j=1}^K s_j$

$\hat{D} \leftarrow \frac{1}{\bar{s}} - 1$

$$\mathbb{E}[\bar{s}] = \mathbb{E}\left[\frac{1}{K} \sum_{j=1}^K s_j\right] = \frac{1}{K} \sum_{j=1}^K \mathbb{E}[s_j] = \mu$$

$$\text{Var}(\bar{s}) = \text{Var}\left(\frac{1}{K} \sum_{j=1}^K s_j\right) = \frac{1}{K^2} \sum_{j=1}^K \text{Var}(s_j) = \frac{1}{K} \sigma^2$$

$$\text{Now, } \mathbb{E}[\bar{s}] = \mu, \text{Var}(\bar{s}) = \frac{\mu^2}{K}$$

By Chebyshev, $\Pr(|\bar{s} - \mu| \geq c \frac{\mu}{\sqrt{K}}) \leq \frac{1}{c^2}$

choose $c = \frac{1}{\sqrt{8}}$, $K = \frac{1}{\epsilon^2 \delta}$

$$\Pr(|\bar{s} - \mu| \geq \epsilon \mu) \leq \delta$$

\Leftrightarrow

$$\mu - \epsilon \mu \leq \bar{s} \leq \mu + \epsilon \mu \quad \text{wp } 1 - \delta$$

$$(1 - \epsilon) \mu \leq \bar{s} \leq (1 + \epsilon) \mu$$

$$\frac{1}{(1+\epsilon)\mu} \leq \frac{1}{S} \leq \frac{1}{(1-\epsilon)\mu}$$

$$1-2\epsilon \leq \frac{1}{1+\epsilon} ; \frac{1}{1-\epsilon} \leq 1+2\epsilon \text{ by Desmos}$$

$$(1-2\epsilon) \frac{1}{\mu} - 1 \leq \frac{1}{S} - 1 \leq (1+2\epsilon) \frac{1}{\mu} - 1$$

$$(1-4\epsilon) \left(\frac{1}{\mu} - 1 \right) \leq \hat{D} \leq (1+4\epsilon) \left(\frac{1}{\mu} - 1 \right)$$

$$(1-4\epsilon) D \leq \hat{D} \leq (1+4\epsilon) D$$

$$(1-\epsilon) D \leq \hat{D} \leq (1+\epsilon) D \text{ w.p } 1-\delta \text{ in } O\left(\frac{\log D}{\epsilon^2 \delta}\right) \text{ space}$$

Advantage: Easy to implement
in distributed setting!

Hyper Log Log:

- Discrete hashing
- Harmonic mean to reduce outliers
- Other tricks :